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A. Details of large language modeling 

In this section, we provide a summary of how to extract important information, i.e., well 

locations (longitude and latitude) from historical well documents by utilizing large language 

models (LLMs).  

To date, numerous LLMs have been developed for various natural language processing tasks, 

such as conversation, text generation, document analysis, translation, and question answering, 

e.g., LayoutLM1, GPT-32, and BERT3. Our focus here is on using LLMs to answer questions based 

 

 

Figure A1 – An example of a historical well completion report. The location of the well is represented 

as a latitude and longitude of 40.378349 and -104.361402, respectively. 
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on historical documents. The information extraction workflow of this work has two directions: 

one for LLM preparation and the other for document processing.  

The detailed steps are illustrated here: At the beginning of LLM preparation, we need to select 

an appropriate question answering LLM from the public domain. A few tests are required to 

determine whether this model meets the requirements of this task.  Model training or fine-tuning 

might be required if the initial model is not feasible for this task. On the other hand, we must 

process the historical documents during the data processing procedure once the historical data 

was collected. Because of the nature of historical documents, various pre-processing including 

data cleaning, denoising, and digitizing might be required. Next, we combine the LLM and 

historical document dataset for the question and answering tasks, during which customized 

questions can be prepared and subjected to the LLM (Figure A2). After processing/analyzing the 

 

Figure A2: Information about inadequately documented oil & gas wells can be extracted from historical 

records using large language models. Here, we show information about the location and depth of a well 

extracted from a scanned document with complicating factors like stamps and handwritten notes. 

These forms sometimes have errors (such as the longitude having the wrong sign – indicating the wrong 

hemisphere of the globe) that large language models can automatically correct. 
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documents, it is anticipated that the LLM can provide answers to the questions based on the 

documents.  

In this study, the DocQuery model was used to extract well location information from 150 

historical documents from the Colorado Oil and Gas Conservation Commission as shown in Figure 

A1. The DocQuery model was trained based on Microsoft’s LayoutLM model using SQuAD2.0 and 

DocVQA dataset, and it can analyze semi-structured and unstructured documents (PDFs, scanned 

images, etc.). We did not perform a retrain or fine-tuning procedure to DocQuery as it yields 

excellent results with 100% accuracy for the 150 documents. A data pre-processing process is not 

required here as the 150 PDF documents are text-based and do not have noisy information. To 

utilize the DocQuery for well location extraction, we asked two questions as shown here: 

What is the latitude of the well? 

What is the longitude of the well? 

After processing the document and the questions, the DocQuery provides the correct well 

location in terms of latitude and longitude of 40.378349 and -104.361402, respectively, for this 

testing example. The location extraction time is around 1 to 2 seconds per document. It should 

be noted that the time for downloading the DocQuery model is not considered here, which 

depends on the speed of the internet. Once downloaded, the DocQuery model can be stored 

locally. 

It is worth mentioning that the current DocQuery model struggles with a more complex dataset, 

e.g., hand-written documents. The future directions of this work include (1) fine-tuning existing 

LLM models with a customized dataset of questions and answers based on historical documents; 
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(2) implementing advanced LLMs to improve the extraction accuracy on the complex and 

challenging dataset. 
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B. Unlocking Insights from Satellite Imagery: Image Classification and Data 

Fusion Approaches for UW Detection 

Our focus revolves around two main aspects. The first aspect pertains to image classification, 

where machine learning algorithms classify satellite images into distinct categories. For instance, 

these algorithms can differentiate between images containing undocumented orphan well (UOW) 

features and those that do not, as depicted in Figure B1(a). This approach facilitates the 

automated analysis of extensive satellite imagery volumes, yielding valuable insights for 

identifying UOWs. The underlying machine learning problem we tackle here is a binary 

classification problem4,5. Binary classification refers to a machine learning task that assigns input 

data points to one of two classes: either 0, indicating the absence of UOWs, or 1, denoting the 

presence of at least one UOW. The primary objective is to construct a model capable of accurately 

predicting the class label of new and unseen instances, leveraging the patterns and relationships 

it learns from the training data.  

Here, our chosen classifier is RegNet_Y_400MF6. RegNet_Y_400MF is a specific architecture 

variant of the Regularized Network that has been specifically designed to be both efficient and 

scalable for a range of computer vision tasks. Its large parameter count, and computational 

efficiency characterize this model, making it particularly suitable for scenarios with limited 

resources. RegNet_Y_400MF can be effectively utilized in image classification, object detection, 

and semantic segmentation tasks. It offers a well-balanced trade-off between model size, 

computational efficiency, and performance, allowing optimal results in various applications. 
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The second aspect we delve into is data fusion, a crucial step in satellite data analysis. Satellite 

data often originates from various sources and sensors, each providing unique types of 

information. Using machine learning algorithms, data fusion facilitates the merging and 

integration of data from multiple input streams. This process leads to a more comprehensive and 

precise representation within analysis systems. In our context, we combine two distinct data 

streams: RGB-formatted satellite images7 and persistent homology (PH)8,9, as depicted in Figure 

B1(b). Persistent homology extracts features from a topological space by utilizing a defined 

function. Regarding remote sensing data, we can envision the data as a two-dimensional rough 

surface, where the pixel values describe its morphology. We employ digital elevation models 

(DEMs) and digital surface models (DSMs) to calculate PH8. We hypothesize that by incorporating 

 
Figure B1. SNL approach: (a) using ML model with only satellite imagery and (b) using ML 

model with satellite imagery and PH as an input. Here, we mitigate a data imbalance 

problem (in which there are many more samples with no UOWs than ones with UOWs) by 

using data augmentation techniques of SMOTE and ADASYN). We also utilize a pre-trained 

model to improve the generalizability of our framework. 
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these additional input streams, we can enhance the ability of our machine-learning models to 

discern meaningful patterns. Consequently, this integration aims to improve the accuracy of our 

models in identifying UOWs.  

The detection of UOWs often encounters a class imbalance issue in the available data. This 

means that the number of positive examples (UOWs) is considerably smaller than that of negative 

examples (non-UOWs). Such an imbalance can result in biased models that perform poorly on the 

minority class. To mitigate this issue, we employ various techniques, including oversampling the 

minority class using Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic 

(ADASYN)10–12. In brief, SMOTE generates synthetic samples for the minority class by interpolating 

between neighboring instances11. On the other hand, ADASYN focuses on the challenging-to-

satellite imagery augmentation F1 score (mean ± std) 

without pre-trained model with pre-trained model 

in-distribution out-of-

distribution 

in-distribution out-of-

distribution 

without PH none 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

SMOTE 0.93 ± 0.005 0.24 ± 0.060 0.78±0.004 0.71±0.010 

ADASYN 0.94 ± 0.005 0.26 ± 0.014 0.78±0.003 0.71±0.024 

with PH none 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

SMOTE 0.98±0.001 0.01±0.018 0.94±0.002 0.18±0.020 

Table B1. results (mean ± std) of RegNet_Y_400MF model with different input and model configurations 
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learn instances of the minority class by assigning them higher weights during the generation 

process12.  

We present our results in Table B1, using the F1 score as our evaluation metric. The F1 score is 

a balanced measure that combines precision (the model's ability to identify positive predictions 

correctly) and recall (the model's ability to find all positive instances). It ranges from 0 to 1, with 

1 being the best possible F1 score. In the absence of data augmentation techniques, our 

framework, with no oversampling, suffers from the data imbalance problem, resulting in an F1 

score of 0.0. However, as we incorporate data augmentation techniques like SMOTE or ADASYN, 

we observe a significant improvement in the performance of our models. 

In the absence of data fusion, where only satellite images are used as input but leveraging pre-

trained models, the generalization ability of the models can be enhanced. Pre-trained models are 

initially trained on large-scale datasets (ImageNet in this case) before being employed for a 

specific task. This pre-training enables the models to learn from diverse data and extract useful 

features, which can aid in generalizing to unseen examples.  

We also consider the performance on both in-distribution and out of-distribution data. Here, 

in-distribution refers to testing on examples from the same region (e.g., county or state) as the 

model was trained on. Out of-distribution testing refers to testing on examples from a different 

region. Specifically, when evaluating the models on in-distribution testing data, the F1 score may 

experience a decrease. However, when testing on out-of-distribution data, the F1 score shows a 

significant improvement, nearly tripling in value. This transferability of pre-trained models is 

advantageous as it allows us to utilize models trained on one dataset, such as Oklahoma, for areas 

like New York.  
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On the other hand, incorporating PH as an additional input (i.e., using both satellite images and 

PH) can enhance performance for in-distribution testing. However, it may compromise the 

model's generalization ability when dealing with out-of-distribution testing scenarios. Therefore, 

careful consideration should be given to the inclusion of PH, weighing its impact on the model's 

overall performance and its ability to generalize across different testing scenarios. 
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C. Location extraction from historic maps 

Our source dataset is the Historical Topographic Maps Collection (HTMC)13, which is a digital 

archive of approximately 190,000 georeferenced topographic maps published by the USGS from 

1884 to 2006 covering the US. Within the HTMC is a series of maps, which are referred to as 

quadrangles, that have consistent colors and symbols for features. The quadrangle maps include 

almost 200 symbols, while the background colors determine the type of surface features (e.g., 

forests and water bodies). The symbols generally consist of simple geometric shapes, with oil and 

gas wells represented by black circles. Because of their relatively simple and consistent shape, the 

identification of well symbols via traditional computer vision techniques such as color clustering, 

edge detection and template matching is a viable option. More modern methods that leverage 

neural networks for computer vision have been proven to be efficient in segmenting images, the 

action of partitioning an image into areas containing objects of interest, and robust against input 

variations.  

For the purpose of identifying UOWs, we trained a U-Net convolutional neural network14 with 

hand-labeled data from 50 different maps for the task of wells symbol extraction.  The value of 

the intersection-over-union, a metric that measures the performance of a segmentation 

algorithm, after training is equal to 0.8 in the validation set. When applied to quadrangle maps, 

the algorithm detects the presence of oil and gas well symbols with a precision of 0.98 on the test 

set. Because the maps are georeferenced, the pixel location in the image can be translated into 

geographical coordinates. The position of the detected wells is compared to the ones from official 

state databases in California and Oklahoma. A fixed spatial buffer is used to label a well as a 

potential UOW or IOW. We additionally performed a visual assessment using current satellite 
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imagery or historical aerial photographs. Once the potential well locations are identified, they are 

provided to the field teams for further investigation to verify the existence of the wells. 

  



 S13 

D. Time domain reflectometry 

Characterization of an undocumented orphan well is performed after discovering the well.  

There are two goals: 1) determine whether the well is leaking pollutants to the atmosphere, 

groundwater, soil and assess the extent and severity of any environmental hazard; 2) determine 

the physical characteristics of the well (depth, casing, cement, condition, etc.) that are needed 

for plugging and abandonment.  

Leakage to the atmosphere is relatively straightforward to detect, and we have already 

described our approach to quantify the amount of methane leakage. Other gases of concern 

include hydrogen sulfide15 and various volatile hydrocarbons16. Detection of any of these gases 

raises the priority of remediating the well and plugging and abandoning it.  

Leakage to soil can often be detected by visual examination where the primary concerns are 

high salinity brines and hydrocarbons. If substantial, this leakage is likely to impact vegetation or 

surface soil which can be readily identified either visually or utilize available sensors, e.g., x-ray 

fluorescence to identify elements characteristic to leakage. It is also possible to use remote 

sensing techniques to observe discoloration of soil and vegetation. In this case, soil impacts can 

be used to identify the location of the UOW. Once the problem has been identified, conventional 

soil-sampling techniques can be used to assess the extent of pollution.  

Leakage to groundwater may be more difficult to detect, and often requires geophysical 

technologies for characterization and mapping. An array of ground, handheld and airborne 

electrical and electromagnetic (EM) technologies are available, including those that have been 

widely used for hydro-geophysical research. By identifying conductivity anomalies caused by 

brine invasion and associated mineral precipitation, these geophysical tools have been 
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demonstrated for groundwater contaminant plume identification and delineation. Generally, 

direct sampling or wellbore confirmation is desired for geophysical data validation and 

calibration. Thus, our recommended practice is to first determine if nearby drinking water wells 

or surface waters show evidence of abnormal salinity or hydrocarbons17. 

As cost is always a factor, we first seek to learn as much about the well as possible without 

resorting to expensive down-well techniques.  We are testing the use of acoustic and 

electromagnetic time-domain-reflectometry (TDR) methods to characterize well depth (Figure 

D1) and access general casing conditions in terms of presence of major damages. The TDR 

methods rely on impedance contrast caused by anomalies on the casing, e.g., due to damage, 

and are non-invasive, quick, and easy to deploy without downhole wireline or equipment 

deployment. These novel technologies are aimed as screening tools for rapid borehole condition 

assessments to guide further characterization needs. While these techniques are conceptually 

straightforward for a simple tubular pipe, wells are typically more complex with multiple casing 

layers, with a production casing string consisting of individual casing lengths (about 40 ft/13 m 

each) with threaded connections; the presence of cement outside each casing layer; the presence 

of devices such as packers inside the casing; the presence of cement plug and other materials 

inside the casing; and the possible presence of casing damage such as corrosion or deformation. 

We will test these techniques on known wells to determine the efficacy of this approach. 
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Figure D1. Electromagnetic Time Domain Reflectometry (EM-TDR) for non-invasive borehole condition 

screening. A. concept of borehole condition monitoring using guided wave EM-TDR; B. Testing of 

prototype EM-TDR system at an O&G well in Oklahoma; C. An example of EM-TDR data showing 

identified features, e.g., damages or bottom, indicated with the red arrows. (photo credit: Yuxin Wu) 
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E. Magnetometry 

 

Figure E1. Rapid iPhone13 magnetic field reconnaissance test along a roughly 30m profile 1.5 m 

over a few magnetically permeable targets.  Data are uncorrected for drift or static shift but are 

stacked over a 0.01 s window to reduce noise seen in the 100 Hz sample rate.   
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F. Machine learning using multi-sensor drone data 

 

Figure F1.  Left: E400 Fixed-wing drone by Event 38 equipped with a Sensys R3 magnetometer. 

Middle: HX8 by Harris Aerial with Geometrics MagArrow in the foreground.  Right: Four HX8 flight 

paths were reconstructed compared to 1 flight utilizing half the battery of the E400. (photo credit: 

Eric Guiltinan) 
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G. Acoustic Methods 

 
Figure G1.  Spectra for autocorrelation with horizontal axis converted to velocity if the travel 

distance is the two-way distance through the well casing. Red, green, blue indicate east, north, 

vertical, respectively.   
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