

IOGCC Undocumented Orphan Wells Program Update

Bi-Partisan Infrastructure Legislation

Relevant Appropriations Language

Section H2 (a, b)

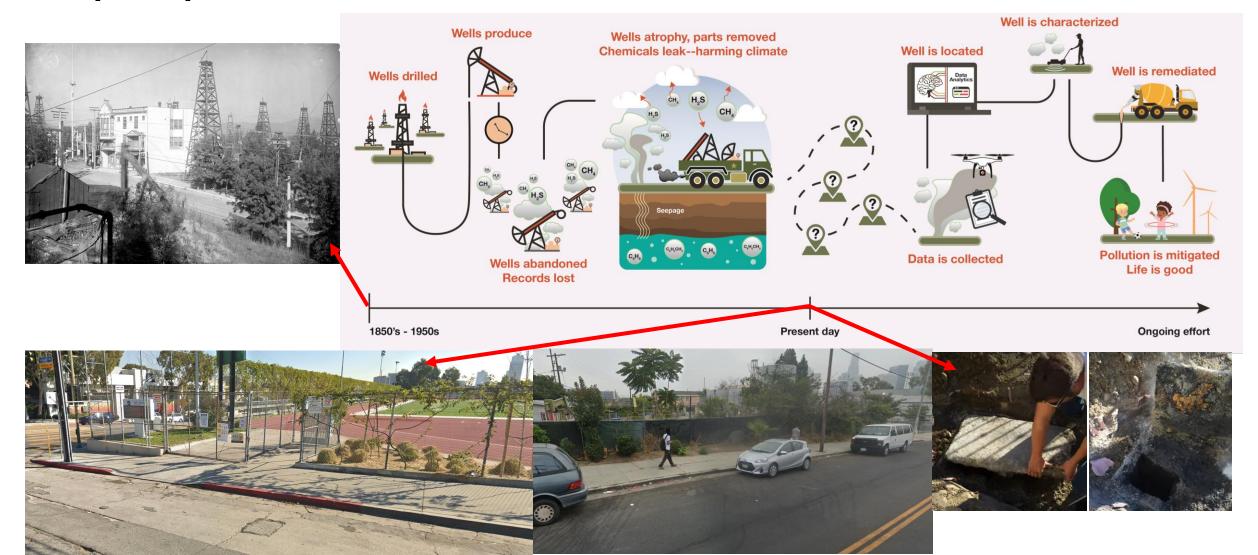
Conduct research and development activities in cooperation with the Interstate Oil and Gas Compact Commission to assist the Federal land management agencies, <u>States</u>, and Indian Tribes in--

(A) identifying and characterizing undocumented orphaned wells; and

(B) mitigating the environmental risks of undocumented orphaned wells;

IOGCC 2021 estimate of undocumented orphaned wells is between **310,000**

and 800,000.

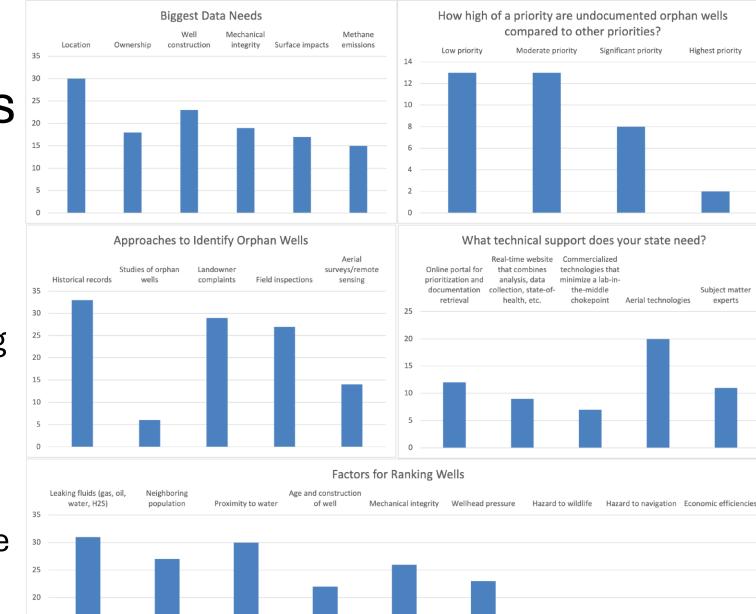

Program Budget

DOE's Undocumented Orphaned Well Program will be executed over <u>5 years with \$30M</u> in appropriated budget.

FY2023 Appropriations

Up to \$10 million to be spend on identification and characterization of undocumented orphaned wells.

Orphan wells are hard to find and impact peoples' lives

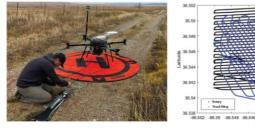


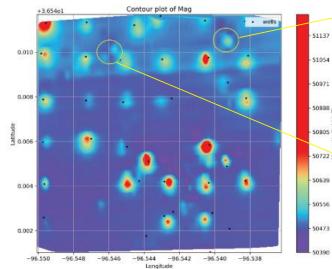
State Survey Results

- We surveyed the states to gather input on priorities and current practices
- This input is vital to setting our research goals
- We welcome ongoing feedback and understand that things will change as we all get more experience with this
 - Please reach out to us!

15

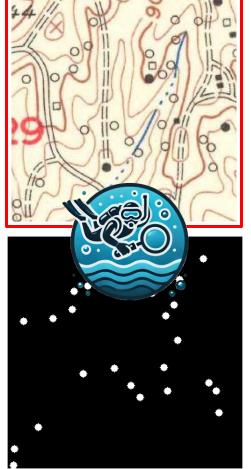
10

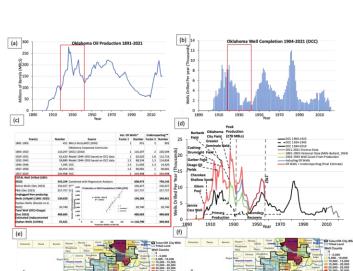



Three stages of orphan well remediation

Before going into the field

Finding wells with field work


After finding a well



Spectral Power

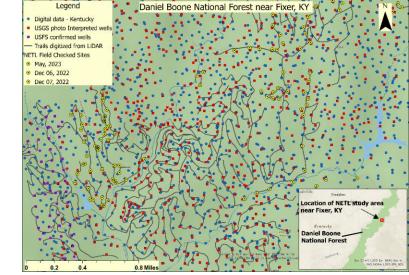
Preparation before fieldwork pays off

Pulling well locations off of historical maps

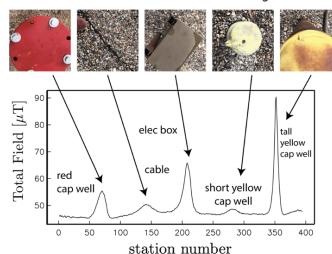
Studying historical production to produce countylevel estimates of unplugged nonproducing wells

Extracting well information from historical records with AI

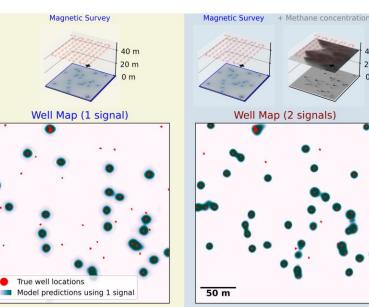
rada


Locate wells with aerial imagery

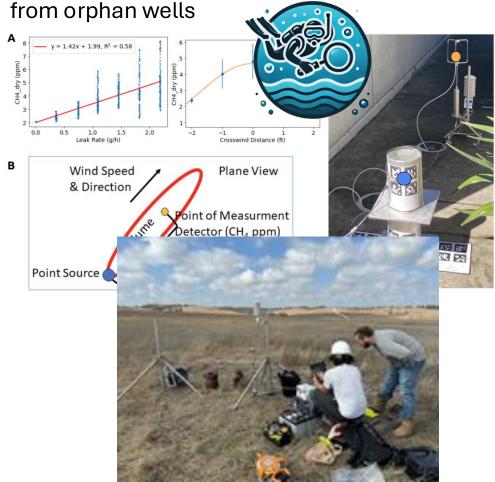
No silver bullet for finding wells in the field

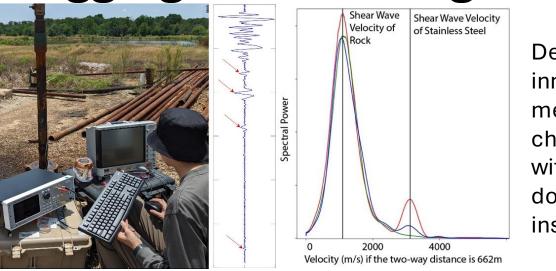


Had success with a fixed wing drone in high winds and rain when a rotary drone failed


Different types of data often indicate different well locations

Field Reconnaissance with iPhone 13 Magnetometer




Citizen scientists can help using sensors on smartphones Combining multiple sensors helps AI find wells better than a single sensor

Characterization & plugging after finding a well

We are developing cost-effective methods and best practices for quantifying emissions

Developing innovative methods for characterization without downhole instruments

The ultimate goal, of course, is to properly plug & abandon the wells to mitigate their environmental impacts

Transitioning into the deep dives

Sebastien Biraud

Christine Sweeney

Undocumented Orphaned Wells Identification from Historical Topographic Maps

* KEIS Radio Tower

Fabio Ciulla fciulla@lbl.gov

Maltha

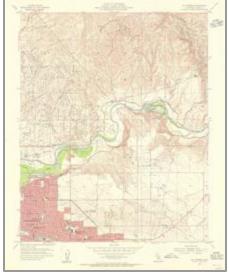
BERKELEY

A Deep Learning Based Framework to Identify Undocumented Orphaned Oil and Gas Wells from Historical Maps: a Case Study for California and Oklahoma

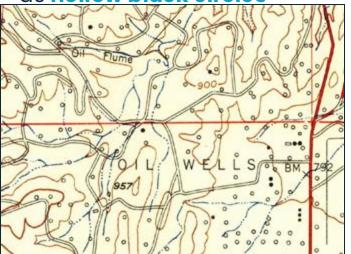
NE

HART-NEMORIAL UN

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

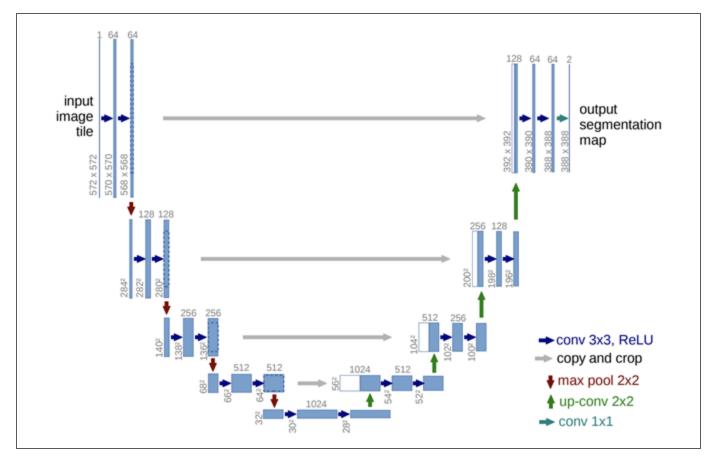

The Dataset

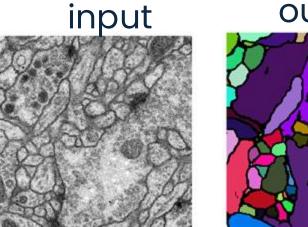
Method for **automated identification** and **accurate location** of UOWs at **regional to continental scales**


Historical Topographic Maps Collection (HTMC): set of 190,000 **georeferenced** raster maps covering the **entire US** published by the USGS **since 1884**.

<page-header>

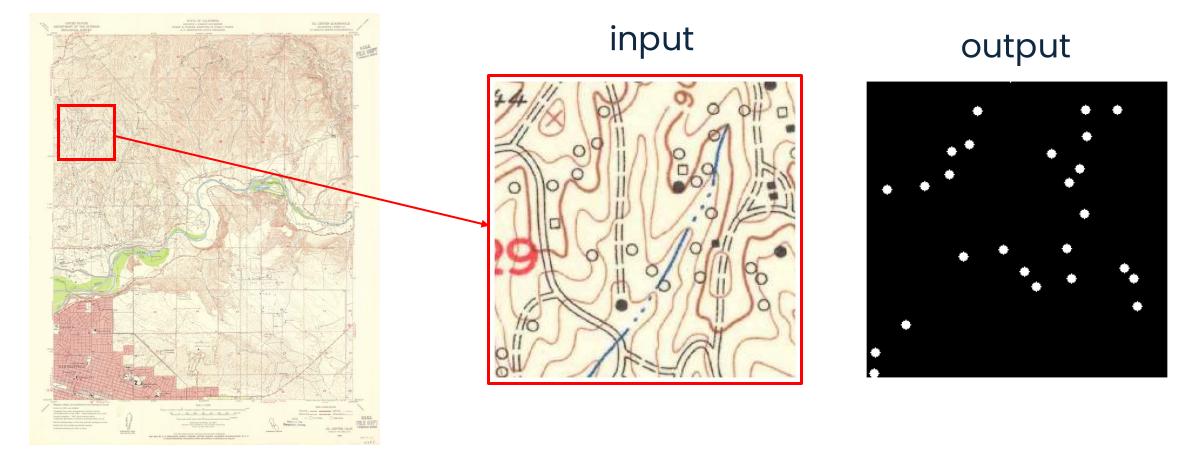
Quadrangles (1947 - 1992) focus on **consistency** of **colors** and **symbols**

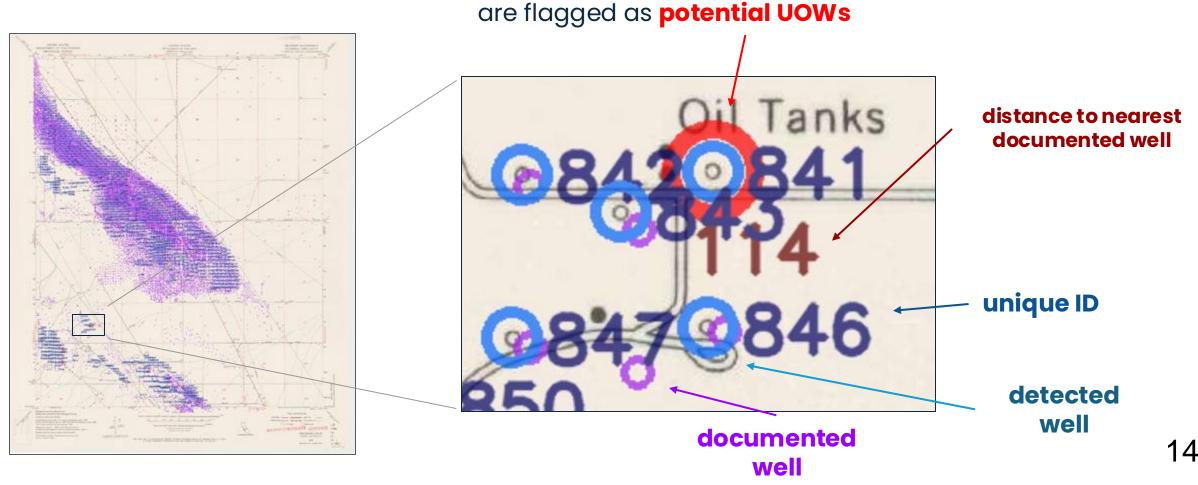

Oil and gas wells consistently represented as **hollow black circles**


Challenge: symbols must be detected!

Al for Computer Vision

Convolutional neural network algorithm for image segmentation

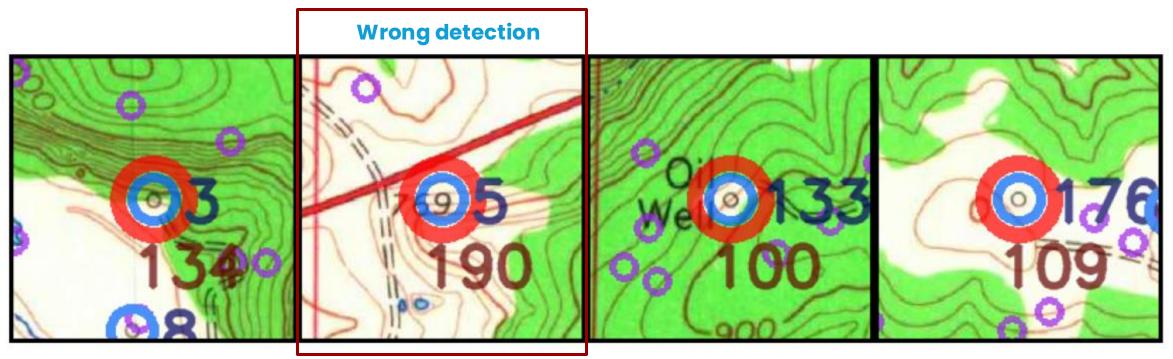

Originally developed to segment biomedical images


Al on topographic maps

11,046 well symbols labeled from 79 different maps

Method - Inference

Each map gets **enriched** with geographical information of the detected wells

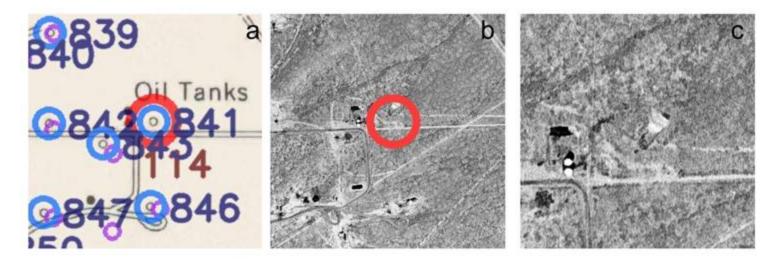

Detected wells further than 100m

from the closest documented well

Method – Vetting Results

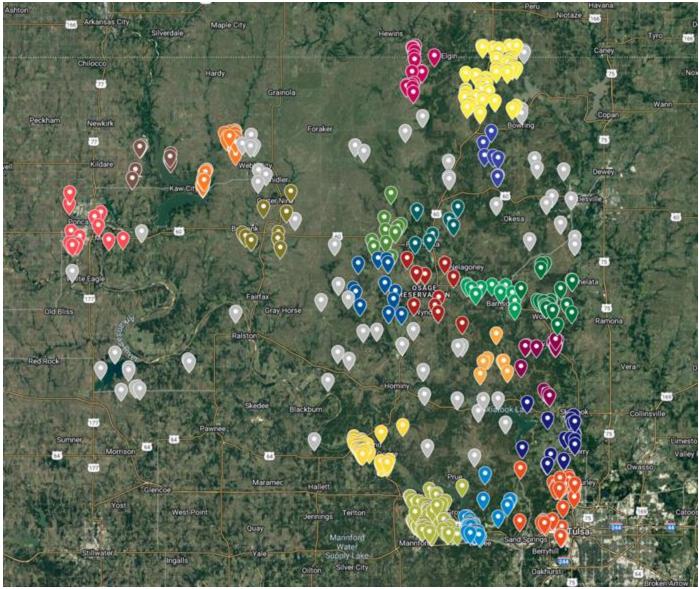
Script to isolate potential UOWs for visual evaluation

Vetting time: about 1,000 potential UOWs per hour

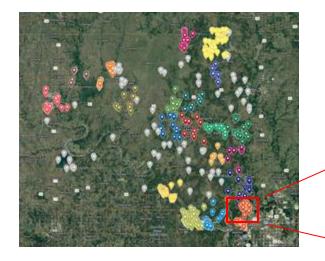


Method – Remote Validation

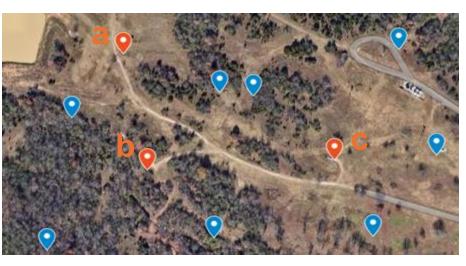
Evidence from **current satellite imagery** (Google Maps)


Historical Aerial photos checked when no structure visible as of today

Results – Osage County



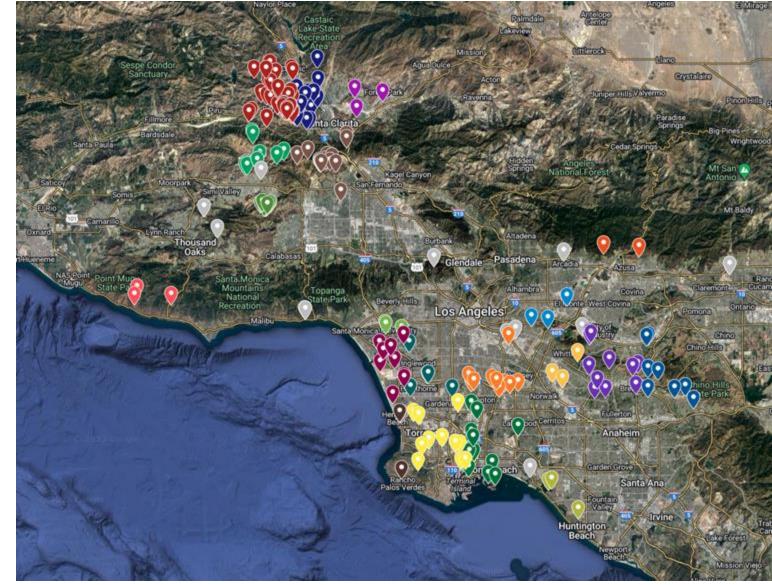
Surface (km²)	5,970
Potential UOWs	261
UOWs per 1,000 km ²	43.7
Ratio UOWs to documented wells	5.9x10 ⁻³



credits: Google Maps

Results – Osage County

Potential UOWs visible from current satellite imagery


Documented wells in blue in this image for reference

Results – Los Angeles County

Surface (km²)	12,310
Potential UOWs	181
UOWs per 1,000 km ²	14.7
Ratio UOWs to documented wells	7.9x10 ⁻³

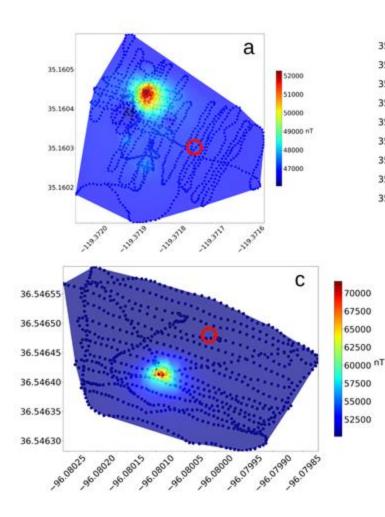
Results – Los Angeles County

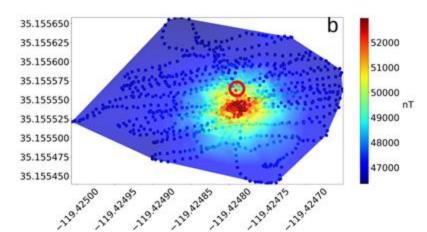
Proximity to hospitals, schools, apartment buildings

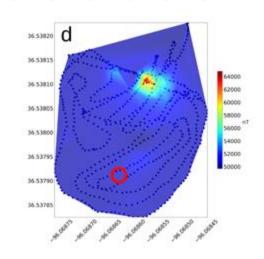
In private residence **backyards**

California Lagged in Capping Century-old Oil Wells Leaking Under Homes of LA Residents Plagued by Illness and Odors

By Marissa Planko on Feb 13, 2020 () 17:12 PS7 Timin mad


Results – Field Validation




Magnetic signature is consistent with presence of well.

Average distance from detected locations in maps: **11.7±1.8m**

Average distance **consistent with the remote validation** one within the error

Well Data "Trapped" in Records

- Records document well permitting and construction process
- Many records have been scanned but are not in a machine-readable format

Oil & gas regulatory records contain valuable information about wells that remains "trapped" on scanned forms

ADDRESS 110 FABM NA Geo TOWNSHI Lin DBILLING	0 Western L	as Corpora		Location Tribution of Olivern A de Sources Office Use Only OGLETOWN BOOLS 40° 15' 00' ERMIT NO DEEP TYPE OF WELL DEEP TYPE OF WELL DEEP TYPE OF WELL TYPE OF WELL DEEP TYPE OF WELL DEEP TYPE OF WELL										
ADDRESS 110 FABM NA Geo TOWNSHI Lin DBILLING	0 Western L	10 001 001	WELL OPERATOR Adobe 011 & Gas Corporation							LEPHONE NO.	(91	5) 68	33-4701	
FARM NA Geo TOWNSHI Lin	ME				Midland	Tevar					101	ZI		
TOWNSHI		11111	A . Seal	1	C3 (16 2	iexas	FAR	M NO.		SERIAL NO.	F 431	line"	ACRES	
DRILLING		ira L, Hai	11 I ton		OUNTY	<u></u>	<u> </u>			<u>.</u>		1910 - S	<u>1995 - 4 - 5</u>	
	COTU			+	Bedford DRILLING COM	PLETED								
Cas	hig a	nd c	en:		entč	169	ig	'n						
182	5 G.L.			F	Ogletov	wn (B	EDA	FOR	6	(X) 7½′		C 1	5'	
				с	ASING AND 1	TUBING F	ECO							
PIPE SIZE	AMOUNT IN	CEMENT	(SKS.)	T	GEL ISKS		-	TYPE	PACK	SIZE	DE	TH	DATE RUN	
16"	26'	Conducto Sanded	or pipe	h	ater pulled	4		-					6-24-7	
	251.02'Gr.	165 sac	cs Reg.	IP:	ort. w/3% (CaC1					Ceme			
11 3/4"		375 sack	is Reg.	P	/sack Ce ort. w/2% (CaCl		tes	10,	Gr. level-	Retu	rns	6-25-1	
8 5/8"	1502' Gr.	265 sack	s 25/7	5	< - Cement pozmix w/61	<pre>% CalSei</pre>	al ar	nd .(15%	Sodium Cit	rate		6-28-7	
4 1/2""	6559' Gr.	preceded	i by 50	BI	ols, salt w	water.	150 E	Bbls,	q	lled water	and		7-12-7	
		of HCl a			ush - plug displace r)			d with for bors. (1,5			00 g	d I •		
4.140	2,0501		00 70			_								
PERFOR	ATION RECOR	D		Γ	STIMULATIC	ON RECO	RD							
DATE	INTERVAL	PERFORATI	D	T.	DATE			REATE		AMOUNT			INJECTIO	
		T		Г					-					
7-17-78	6469'	9' <u>6479'</u>			6469-79 25,000 gal 25,500 6490-6500 4,000 gal			9.4 Bb						
8-18-78	6490	6500		8-18 & 19-78		down 2-7/8 20% HC1 tubing				5.Bb1.				
		. + 0	0.0	-	0.04		-					1		
	-	T.D.	D.D.	-	D.P.I.	FEY	5	0	-9	Leas			ļ	
	L	6585		E		rel				L		1		
NATURAL OF	PEN FLOW			Ī	NATURAL ROC	K PRESSU	RE					•	HR	
AFTER TREA	TMENT OPEN F			1	FTER TREATM			ESSUR	É				24 HR Xis	
REMARKS:	10 Ncf on			<u>ا</u>	80 psig	on 8-20	1-78						ARV	
nemanks:	Well plug	ged and a	bandone	+d	8-29-78									
				•		·				R	ECI	riv	ED	

Digitizing Well Records

- Quality and format of well regulatory records vary substantially over time and between jurisdictions
- Information contained in each record has generally increased

There is a critical need to digitize well records for both research and regulatory purposes

Pennsylvania - 1957

-56				
COMPARIALITH O DEPARTMENT		IA		
Patteton HARRI	s Division SEURG	PERMIT NO.	LAC-4 None req	uired SHALLOW
QUADRAGOLE: <u>BRUDON</u> Ø 12, □.15, MP REFERENCE: 8000' A. at 75°47' 30' 3600' 50t 440.25' WELL F		KIND OF WE	Gas	L, Gas, Other)
COMPANY: Transcontinental Production Company	Size of Casing and Tubing	Used in Drilling	Left in Well	Fackers: Type, Size and Depth
ADDRESS: _744 Broad Street, Newark, N.J.	13 3/8"	40	40	• 62 ·
FARM Ellsworth LaCos ACRES 130	8 5/8"	1165	1165 .	
WELL(FARM) NO. 1 CO. SERIAL NO. TPC-9	7"	1946	1946	C-300 Lark in bot
ELEVATION: 991.11 LEASE: 54	2 7/8"	2760	2760	0.D. @ 2760
TOWNSHIP: Ransom COUNTY: Laokawanna			1	
DRILLING COMMENCED: 2-16-57 COMPLETED: 5-12-57		S. 4. 1.	1	
PROLUCTION:Gas - 200 MCF				PERFORATIONS AT:
ROCK PRESSURE: 550 psig48hrs				
WELL TREATMENT: (Shooting, Acidizing, Fracturing			14	- C
Etc.)	1. A.	i na station		
Shot with 200 qts at 2853-2903	CEMENTING DA	TÀl (Size	Pipe, Dept	h, No. Bags, Date)
	7" CSG @ 19			

Pennsylvania - 2002

		COMN	IONWE	ALTH C	F PENNSY		174		<u>Seta fil</u> Menuel	2 7 102
COMMONWEALTH OF PENNSYLVANIA در ۱۵۵ COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIROMENTAL PROTECTION Oli & Gas Management Program										Facillity#
	w	ELL RE			OMPLETION			FIX Clien		Sub-fac#
		ell Operato	r		DEP ID#	Well API # (Permi	t / Reg)	Project N	umber	Acres
Atlas Resou	irses, Inc				6422	37-073-20333		n/a		
Adress						Well Farm Name			Wel#	Municipality
101 McQuis	ton Drive					Moore			2	
City				State	Zip Code	County			licipality	
Jackson Ce	Phone			PA	16133	Lawrence			mington	
-	Phone 24-662-03	200			ax USGS 7 5 min quadrangle map 12-3039 New Castle North					
Well Type		WELL			hbination Oil &	Allad complete Log of Ga Injec	dimations	on Back (page	2)	
				1.1000		Ga injec		Storage		Disposal
Drill Meth	od /^	Rotary-/	Air 🔄	Rotary-N		Cable Tool face Elevation Total Depth-Driller Total Depth-Conner				
	21/01	1	12/29/			ace Elevation Total Depth-Driller Total Depth-Logge 1255 6409 6408				
	Casing	and Tul	oing			ned on Surface ca turned on coal prot		sing?	No Yes	
Hole Size	Pipe Size	Wt	Thread/ Weld	Amount in Well		al Behind Pipe and Amount	Packe	e Size	Centralizers	Date Run
14 3/4	11 3/4	36	Threaded	250	400 sxs Stan	dard				12/22/01
11	8 5/8	24	Threaded	940		110 sxs Standard	Shoe		940	12/22/01
7 7/8	4 1/2	10 5	Threaded	6195	230 50/50 Poz	with 6% gel	Latch Plug		6185	12/30/02
					80 50/50 Poz	with 2% gel	5 Cen	tral 4 1/2		

Technological Solutions Exist

Optical Character Recognition (OCR)

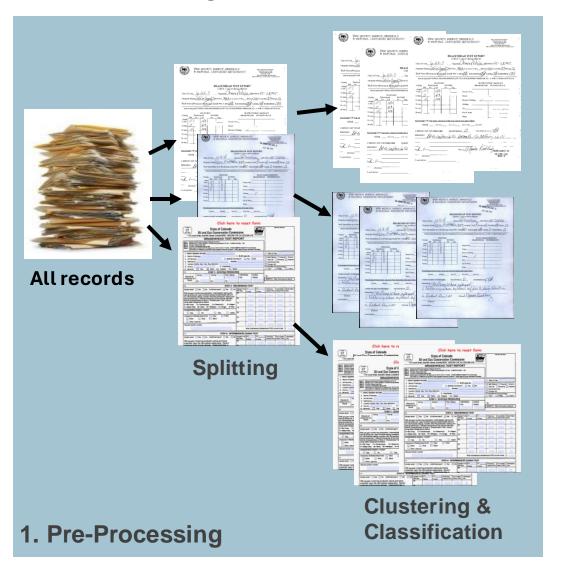
- Algorithmic conversion of text into machine readable format
- Large Language Models (LLMs)
 - Neural networks trained on large volumes of text that can summarize and answer questions about documents
- Numerous public and proprietary tools available
- Performance relies on specific training

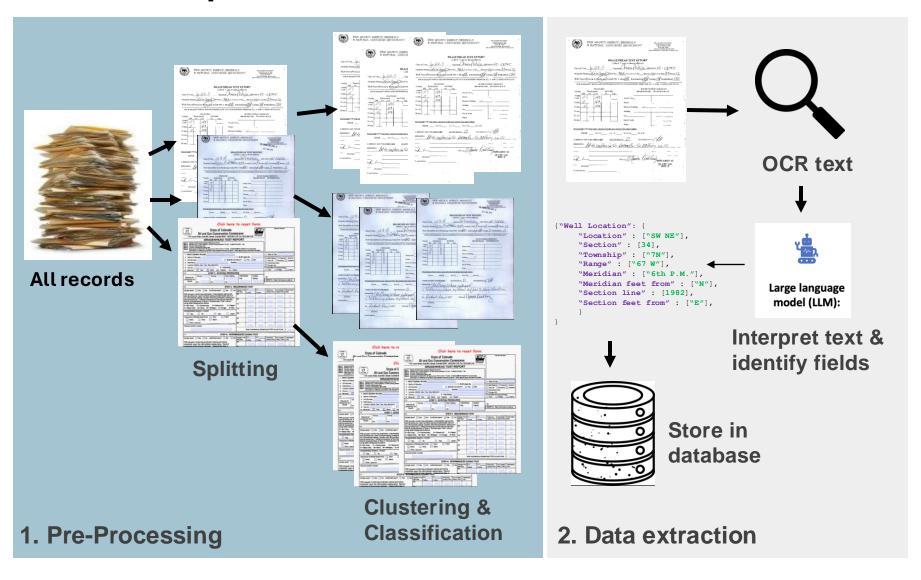
Goal is to create a tool that applies custom OCR and LLM approaches to facilitate historic record digitization

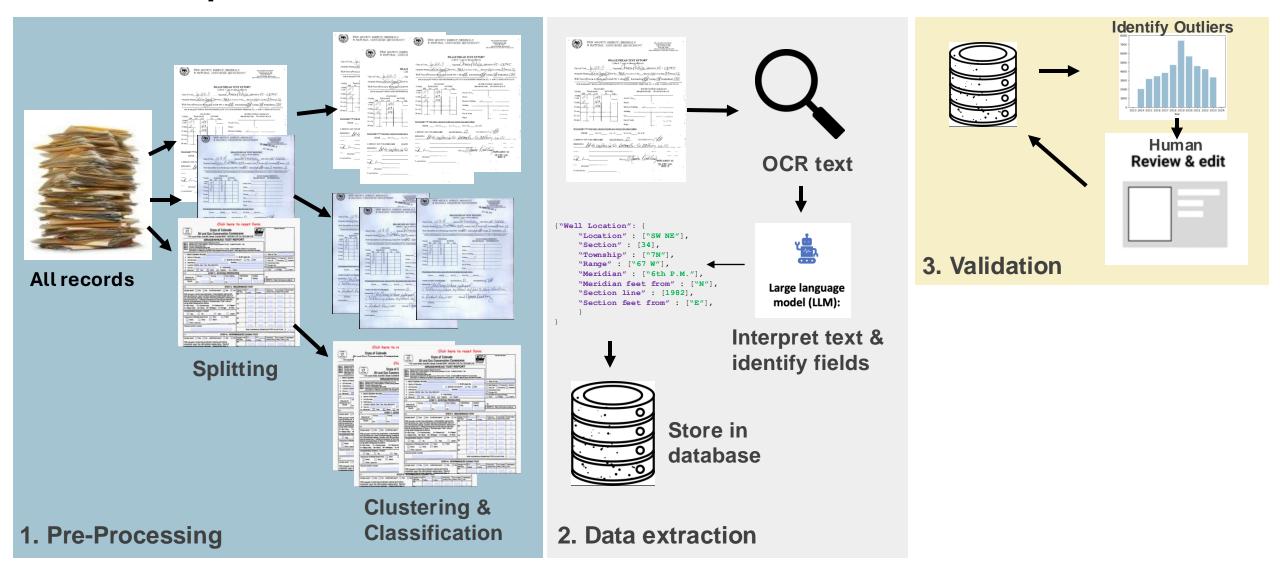
OGRRE: Oil and Gas Regulatory Record digitizEr

- First prototype released in May 2024
- Hosted on Google Cloud Leverages Document AI

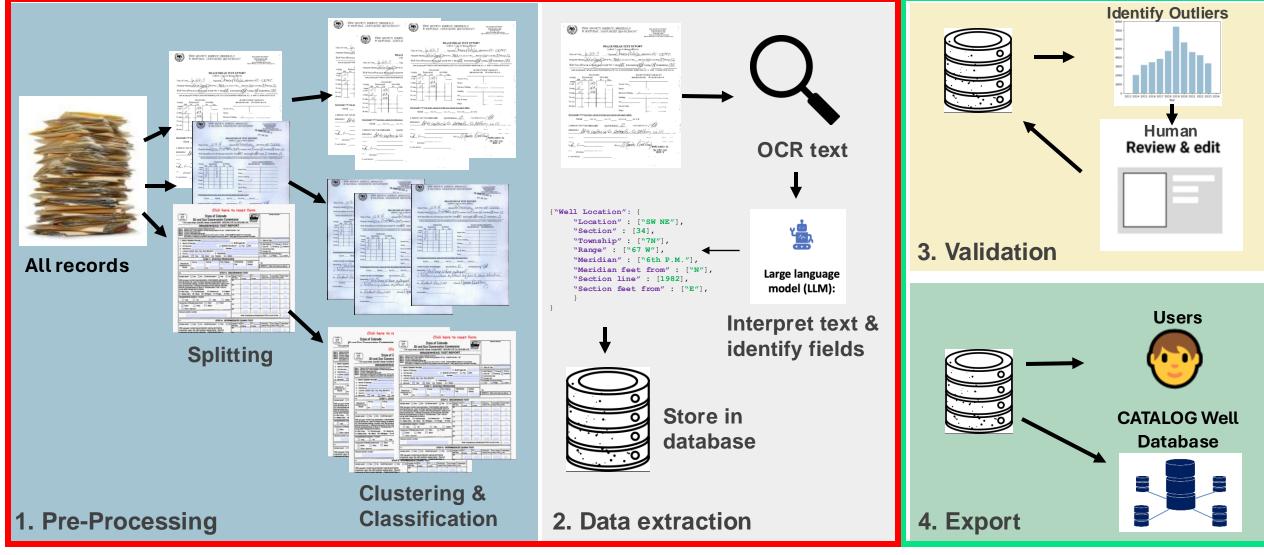
Illinois State Geological Survey Collaboration I


- Three summer interns using OGRRE to digitize well completion reports from ~500 high priority wells in Illinois
- Iteratively improving tool design





Illinois State Geological Survey


Prairie Research Institute

Outside OGRRE v1

Current OGRRE Workflow

Log in

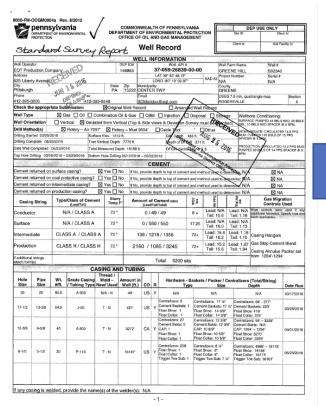
ſ	Undocumented Orphan Wells UI

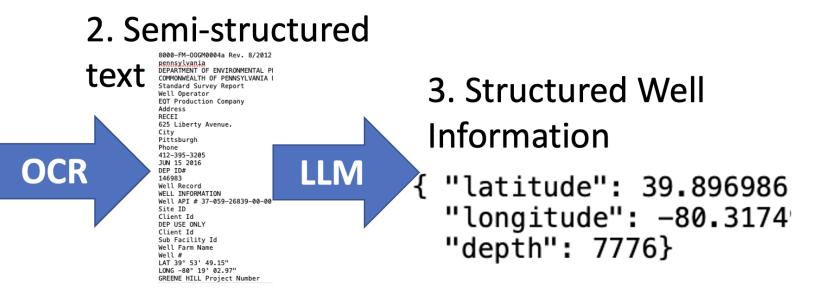
Choose project (Slides 4 - 6)

	OGRRE	PROJECTS	RECORDS				
,	A / PROJECTS						
1	Projects						
	,						
	Project Name			Descrip	tion		
	Illinois Test Proj	oct		Initial Te	st Project		
-							
-							
	CORRE PROPERTY						
-17	OGREE PROFILE						
1		PROACT.					
	 (************************************	PROACT.					
	 (************************************	PROACT.	Der Spanter	at here	Res Latitude	Logar Services	
	 pression pushes rear literation Test Project heart Test 	PROACT.	Des latures Latertes	-	New Conference 10 %	Least Services	
	 pressure provident non- liticols Test Project Receiver stransport, eds. 	- 		-			
	contraction processes that Himois Test Project Henrichtere contractions, educ contractions, educ	ineast 	100000	all familie	н ч.	65	
	 pressure years that the project Reservers Second Reservers Second Reservers Second Reservers Second Reservers 	annan ann ann ann ann ann ann ann ann a	100000		#%	65 85	
	 pressure yourses rain timois Test Project next here structure, etc. structure, etc. structure, etc. structure, etc. 		1080004 1080004 1080004	#*****	8% 8%	45 85 85	•
	(Peterson Sectors) (Incols Test Project (Incols Test Project (Incols Test Project (Incols Test Project (Incols Test (Incols (Incols Test (Incols (Incols Test (Incols Test (Incols (Incols Test (Incols (Incols	2000/00/2000/2000/2000/2000/2000/2000/	10000 10000 10000 10000	17 Sole	8% 8% 8%	45 45 45 45	•
	(PREASY) (Sales War Hinois Test Propect (Sales Manuel Manuel (Sales Manuel) (Sales Manuel) (Sales Manuel) (Sales M	Haat 	100000 100000 100000 100000	Protect	85 85 85 85	65 85 85 85	•

Review records (Slides 8-13)

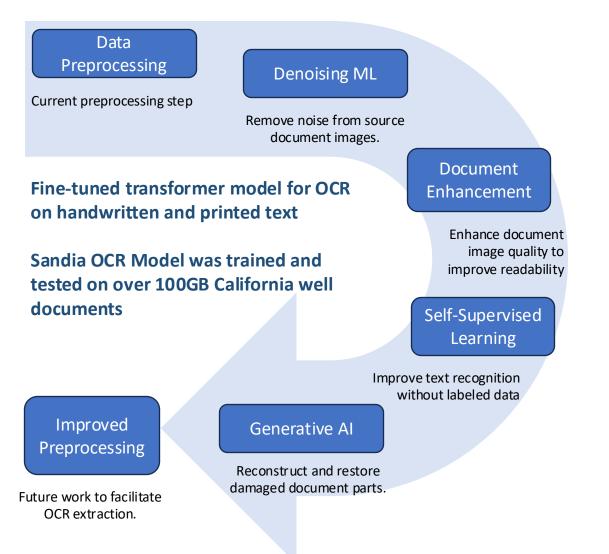
Sign out


Export records (Slide 7)



Oil and Gas Regulatory Record Digitizer (OGRRE) Tool Demo

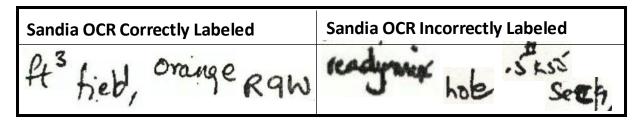
Multimodal large language models for historical records


1. Document image

We have had early success extracting well characterization information from image-based documents using optical character recognition (OCR) and large language models (LLMs) like ChatGPT

OCR for orphaned well record analysis

Current Process



Objectives

Efficient Text Extraction: Automate and streamline the process of extracting text from legacy handwritten documents which are often difficult to read and digitize manually.

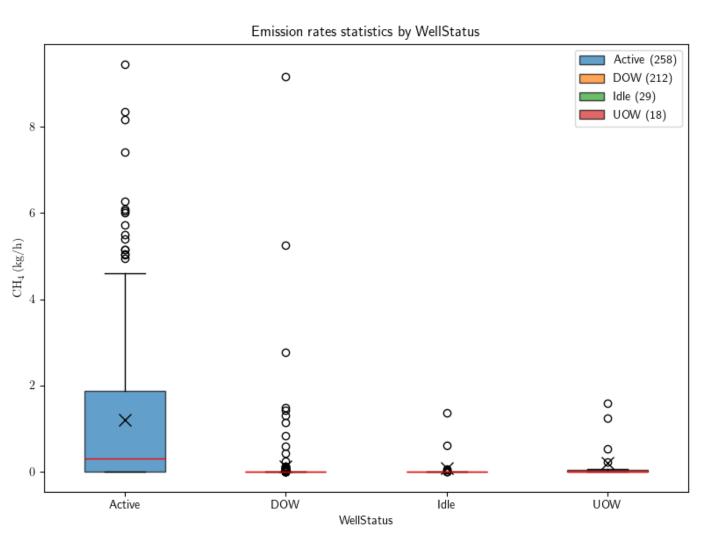
Integration with LLM: Use the extracted text with Large Language Models (LLMs) to find lost oil and gas wells, contributing to climate change mitigation efforts by identifying and addressing potential environmental hazards.

Results: 0.89 accuracy

Future Work

- Integration with LANL Language Model and LBL Web Application
- Predict misreads with LMs integrated into the scope of MM-Model
- Scaling and fine-tuning the transformer model

Methane detection and Emissions Quantification


Sebastien Biraud¹ (<u>SCBiraud@lbl.gov</u>), Mavendra Dubey², Mohit Dubey¹, Emily Follansbee², James Lee², Andrew Moyes¹, Natalie Pekney³, Matthew Reeder³, Andre Santos¹

¹ Lawrence Berkeley National Laboratory (LBNL)
 ² Los Alamos National Laboratory (LANL)
 ³ National Energy and Technology Laboratory (NETL)

WP1 Objectives

- Provide DOI with <u>accurate, cost-effective methane measurement methods that can be used to</u> <u>report well emission reduction values</u> back to congress as required by the BIL language.
- Most wells are low emitters; large number of emitting wells adds to significant emissions.
- Flow rate is difficult to measurement to make without complex equipment. Concentration is a much simpler measurement to make.
- The low level of emissions from individual wells are a challenge for satellites thus require new technologies.
- Understand methane emission distributions + uncertainties from orphan well populations.
- Understand the temporal component of well emissions and the related uncertainty.

Emission Statistics

Well Status	Median (g/h)	Mean (g/h)
Active	312	1201±1780
DOW	0	123±768
Idle	0	71±271
UOW	3	206±461

Field campaigns in CA, OH, OK, PA, NM, and TX. N=517 wells

Methane Detection and Quantification Activities

- Quantitative measurement of UOW methane emissions
- Backpack-based and drone measurements
- Used before and after P&A data
- Validates effective P&A
- Provides DOI with important metric of impact of program
- Applies to both undocumented and documented P&A programs

<u>Need</u>: states and other stakeholders currently lack a rapid method for measuring methane emissions and robust methods for pinpointing leaking undocumented orphan wells

Comparative assessment of commercial and research methods to quantify methane leak rate for UOW

Method	FLIR	SEMTECH	Static Chamber	Dynamic Chamber	GPM	Vent Buster	UAV	EPA OTM 33A	FAST
Hardware	\$100K	\$40K	\$10K	\$25K	>\$5K	\$50K	\$60K	\$10K	<\$35K
Range (g/h)	>100	1-1000	0.1-10	0.1-200	>100	>100	50-1500	>50	1-1000
Accuracy	Low	High	High	High	Low	High	High	Low	High
Size	Small	Small	Large	Large	Large	Large	Large	Large	Small
Labor	Low	Low	High	High	Low	High	High	Low	Low
Safety	High	Low	Low	Low	High	Low	High	High	High

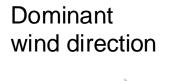
FAST Method: Gaussian plume model framework

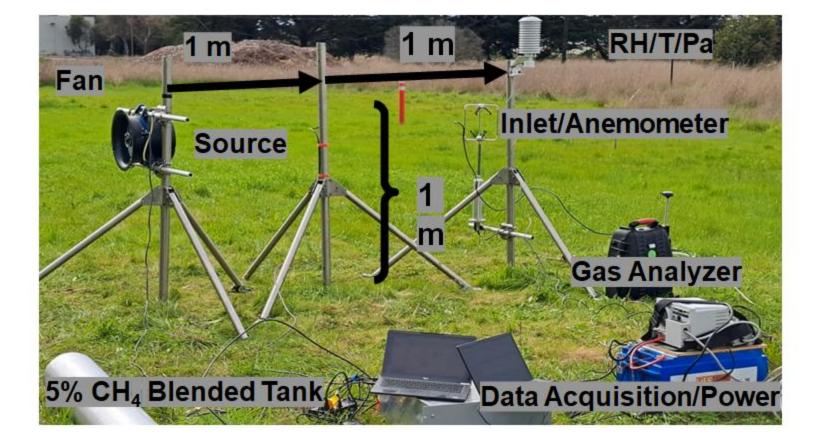
Methodology is based on Gaussian Plume Model to estimate emission rates from measurements of:

- CH₄ atmospheric concentrations
- 3D wind observations

We assume: y=0 (along the plume centerline) and z=H (source/receptor at same height)

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)$$
 where:


We can then solve for the estimated flow rate (Q_{est}) as a function of time averaged concentration (\overline{C}) and wind speed (\overline{u}):

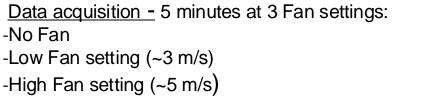

$$Q_{est} = \overline{C} \cdot \overline{u} \cdot K \quad \text{where } K = \frac{2\pi\sigma_y\sigma_z}{\exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)}$$

measured ???

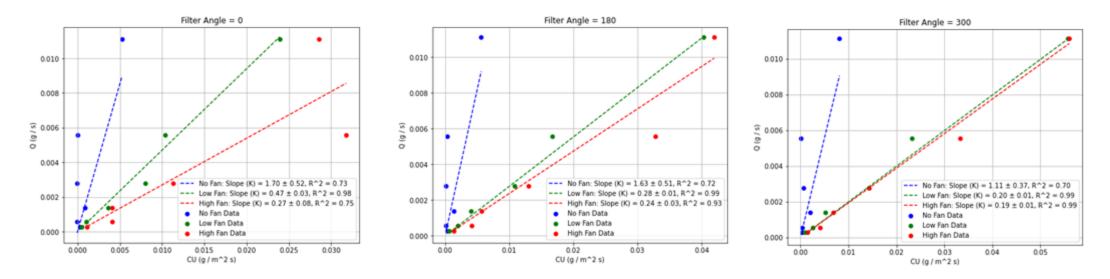
FAST Method: K coefficient estimated from control release

In contrast to previous studies, we investigated the application of "forced advection" by using a fan to reduce variability in U and C associated with wind conditions (fan is isotropic and leads to the creation of a Gaussian distribution within the flow)

FAST: Forced Advection Sampling Technique (Dubey et al., 2024 – in prep)



FAST Method: K coefficient estimated from control release


Control Release Settings

- Range: 1 g/hr to 40 g/hr (using 5% CH_4 tank and diluted with UHP N2).
- Target emission rates: 1, 2, 5, 10, 20, 40 g/hr CH_4

$$K = \frac{Q_{rel}}{C \cdot u}$$

Data filtered to minimize impact of crosswind, because of strong winds on day of experiment (1-5 m/s with gusts up to 10 m/s)

Plotting C * U vs. Q_{true} allows us to estimate values of K. With Fan OFF, data fit is poor (R² < 0.75) due to variability in wind. With Fan ON, we can fit values of K ~ 0.20 (Low Fan) and 0.19 (High Fan)

Field Campaigns: sensors tested

- ✓ OGI camera (FLIR, cost: \$100k)
- ✓ In situ HIGH-FLOW2 sensor (SEMTECH, cost: ~\$40K)
- FAST method: In situ CH₄ sensors Conc. (Picarro, model: G4302, cost: ~\$45K) + In situ wind sensor (Gill, model: R3-50; cost: ~\$10k)
- ✓ LIDAR (Xplorobot, cost: ~\$150 scanned well)
- ✓ Gas rover (Bascom-Turner, cost: ~\$4.5k)

Field Campaign: Reality Check #1 (Texas)

<u>Charge</u>: Quantify methane emissions at 11 Documented Orphaned Wells (DOW) before Plugging and Abandonment (P&A)

Location: US Forest Service (Angelina and Sabine Districts)

Timeline: Feb 5-7, 2024

Approach: FLIR / SEMTECH / FAST / XploRobot / EPA (2-point)

Field Campaign: Reality Check #2 (Oklahoma)

<u>Charge</u>: Quantify methane emissions at Documented and Undocumented Orphaned Wells (DOW and UOW)

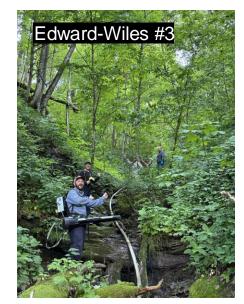
Location: Osage County

<u>Timeline</u>: March 11-15, 2024

Approach: FLIR / SEMTECH / FAST / XploRobot

Field Campaign: Reality Check #3 (Ohio)

<u>Charge</u>: Quantify methane emissions at Documented and Undocumented Orphaned Wells (DOW and UOW)

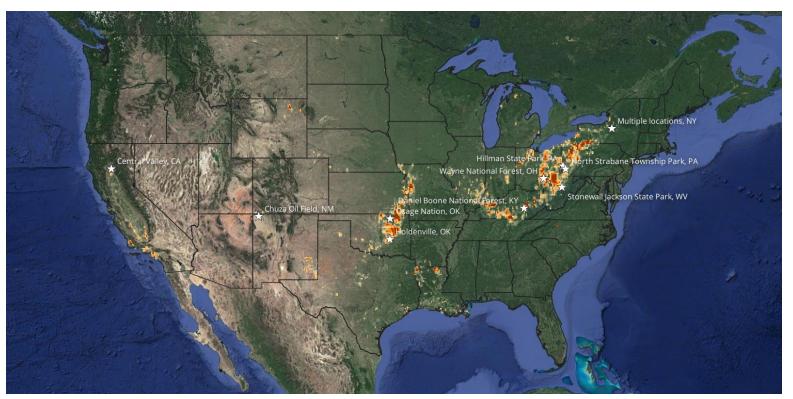

Location: Osage County

Timeline: May 19-24, 2024

Approach: FLIR / SEMTECH / FAST / XploRobot

Field Campaigns: Results

Date	Well ID	SEMTECH (g/hr)	FAST (0 Filter) (g/hr)	FAST (180 Filter) (g/hr)	FAST (300 Filter) (g/hr)
2024-02-06	Rayburn #7 (Lufkin, TX)	2.9 ± 0.0	Low: 5.2 ± 4.5 No: 0.8 ± 2.8	Low: 3.3 ± 2.7 No: 0.9 ± 3.1	Low: 2.6 ± 1.9 No: 0.6 ± 1.8
2024-02-07	Connor #92 (Lufkin, TX)	1.0 ± 0.3	Low: 1.0 ± 1.4 No: 0.4 ± 2.4	Low: 0.7 ± 0.9 No: 1.1 ± 3.8	Low: 0.5± 0.7 No: 1.3 ± 3.4
2024-03-14	Humphrey #5 (Barnsdall, OK)	2.0 ± 0.04	High: 2.8 ± 1.8 Low: 5.6 ± 3.7 No: 15.0 ± 22.8	High: 2.5 ± 1.5 Low: 3.4 ± 2.2 No: 14.4 ± 21.9	High: 2.0 ± 1.1 Low: 2.5 ± 1.5 No: 10.0 ± 15.1
2024-03-14	Hooper #41 (Barnsdall, OK)	70.1 ± 95.5	High: 12.1 ± 15.3 Low: 20.2 ± 31.4 No: 2.6 ± 15.8	High: 10.8 ± 13.3 Low: 12.0 ± 18.6 No: 2.6 ± 15.6	High: 9.3 ± 10.4 Low: 9.9 ± 12.7 No: 1.0 ± 4.0


Next Steps

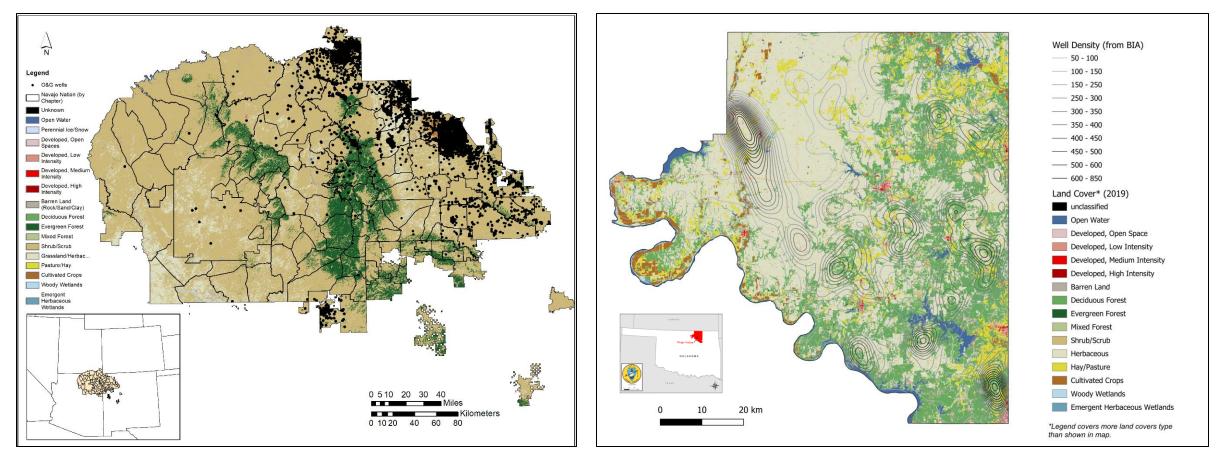
- Forced advection (Fan) enhances results compared to ambient wind conditions (No Fan)
- Uncertainties in emissions, though sizable compared to SEMTECH, remain reasonable for quick screening
- Further analysis required on wind direction filtering and optimal averaging windows to improve existing results
- Future work includes validating method with low-cost sensors, in order to bring down cost and establish standard emission quantification protocol
- Expand the scope of field campaigns to thoroughly validate the method across a spectrum of realworld scenarios
- Characterize temporal variability of methane emissions from DOWs and UOWs

Field Teams

Christine Downs (SNL, <u>cdowns@sandia.gov</u>), Eric Guiltinan, Mavendra Dubey (LANL), Sebastien Biraud, Andre Santos, Yuxin Wu (LBNL), Matthew Reader (NETL), Jacob Trueblood (LLNL)

- rapidly plan, collect, and interpret <u>UOW field surveys</u> in novel areas or for underserved communities
- <u>build a database</u> of real-world geophysical and emissions data
- early testing of guidelines and workflows in various real-world environments
- <u>curate field data</u> into a database for eventual public consumption

Locations of past, current and future field work across various terrain types. Heat map of O&G wells from NETL's working national database.


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Navajo Nation

- 133,639 documented wells (5595 in NN)
 - 124,215 O&G (44,705 abandoned)
 - 2,321 additional abandoned

Osage Nation

- 43,822 documented wells (BIA)
 - 28,323 O&G (13,370 abandoned)
 - 2,347 additional abandoned

Terrain: steep canyons and flat mesas within a semi-arid desert

Terrain: herbaceous, deciduous forest and hay/pasture

A framework for collaboration

Memorandum of Understanding between FECM and Osage Nation and Navajo Nation:

- **Build** capacity, provide needed technical assistance.
- **Search** for undocumented orphan wells using desktop and field-based methodologies.
- Share all collected data and resulting interpretation.
- Support the development of the Osage Nation's own UOW identification capabilities.

Memorandum of Understanding on Cooperation Between the Osage Nation and the U.S Department of Energy's Office of Fossil Energy and Carbon Management, Office of Resource Sustainability

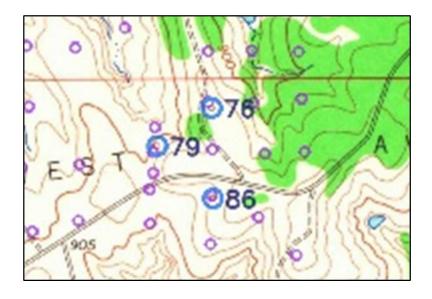
This Memorandum of Understanding (MOU) is made and entered into by and between the Osage Nation and the U.S. Department of Energy's Office of Fosail Energy and Carbon Management, Office of Resource Sustainability (DOE-FECM), identified in the signatory section below and are collectively referred to as the "Parties."

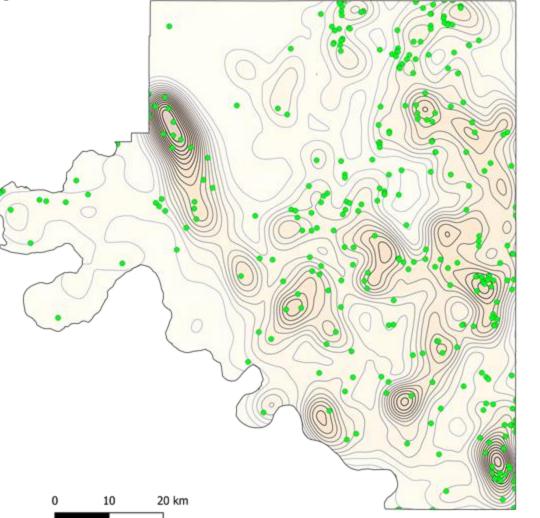
It is the mutual intention of the Parties to collaborate to build capacity, provide needed technical assistance, share data regarding undocumented orphan wells for the direct benefit of the Osage Nation and their people, enhance coordination and collaboration between the Parties, and maximize the benefit of both public and private investment in the development of an equitable energy future for the Osage Nation.

Background

The U.S. federal government has treaty and trust responsibility to protect tribal sovereignty and to revitalize tribal communities, including through economic and energy development. This responsibility is enshrined in the U.S. Constitution, treaties between the U.S. government and Indian Nationa, court decisions, and legislation. This treaty and trust responsibility is carried out through nation-to-nation relations and actions of the federal government, including through regulations, policies, funding, and programming.

Recent legislation offers federal flanding opportunities to Tribal communities, including through direct support to plug and abandon orphan wells. The Infrastructure Investment and Jobs Act, Public Law No. 117-58 (November 15, 2021)—also known as the Bipartian Infrastructure Law (Bill.)—provides \$4.7 billion in funds to plug and abandon orphan wells on federal, state, and tribal lands. These funds are being administered by the U.S. Department of the Interior (DOI) <u>Orphaned Wells Program Office</u>, Alongside the DOI efforts, DOII-FECM was directed to allocate \$30 million over five years to identify and characterize undocumented orphan wells (UOWs), develop best practices, and support federal, state, and tribal efforts to reduce the impact of UOWs. See, <u>CATALOG</u>—Consustian Advancing Technology for Assessment of Lost Oil & Gan Wells (merry.gov).

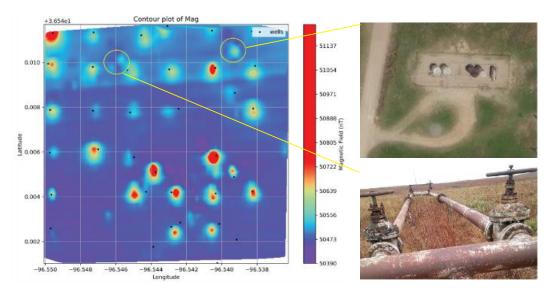

Authority


DOE enters into this MOU under the authority of section 646 of the Department of Energy Organization Act (Pub. L. 95-91, as amended; 42 U.S.C. § 7256).

The Osage Nation enters into this MOU under Art. VII, Sec. 1 of the Osage Nation Constitution ratified by the Osage people on March 11, 2006, and signed into law on May 6, 2006.

Pre-field deployment

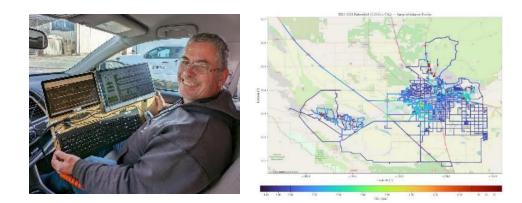
Image segmentation techniques have been performed on topographic maps covering Osage County to extract O&G well symbology.


O&G Wells from Topographic Maps
 Well Density (from BIA)
 50 - 100
 100 - 150
 150 - 250
 250 - 300
 300 - 350
 350 - 400
 400 - 450
 450 - 500

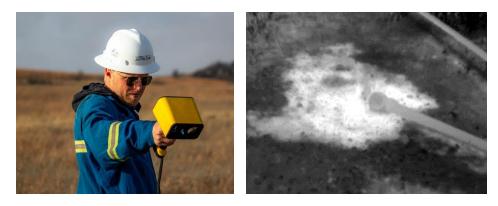
----- 500 - 600 ----- 600 - 850

- Dual airborne sensing:
 - Aboard a fixed-wing unmanned aerial vehicle.
 - $\circ~$ High resolution methane sensor.
 - Magnetometer.
- Ground-based surveying:
 - Mobile continuous gas sampling.
 - FLIR camera.
 - Semtech Hi-Flow & FAST.
- Manned plane sensing:
 - FARAD PhoeniX X-band radar system
- Smartphone Geophysics:
 - Smartphone internal magnetometer, GPS

Fixed-wing UAV equipped with magnetometer and Rotary UAV equipped with wind speed and methane sensor



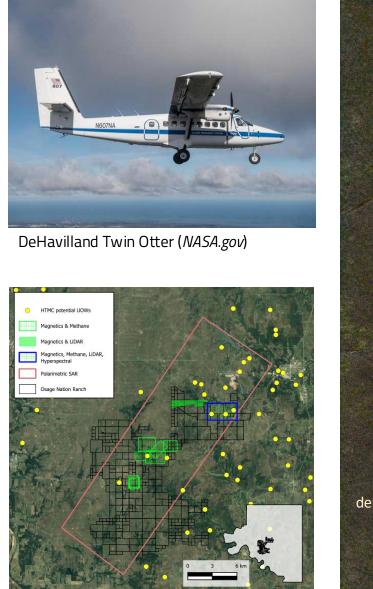
Example magnetic anomaly map from airborne survey at Osage Nation


- Dual airborne sensing:
 - Aboard a fixed-wing unmanned aerial vehicle.
 - High resolution methane sensor.
 - Magnetometer.

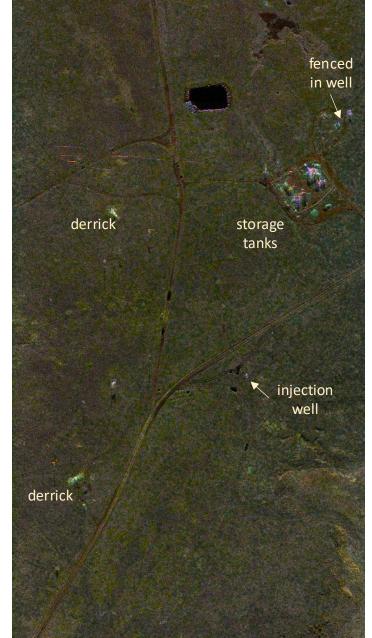
Ground-based surveying:

- $\circ~$ Mobile continuous gas sampling.
- FLIR camera.
- Semtech Hi-Flow & FAST.
- Manned plane sensing:
 - FARAD PhoeniX X-band radar system
- Smartphone Geophysics:
 - Smartphone internal magnetometer, GPS

Gas analyzers, sample pump, GPS, 3D wind speed and direction, air temperature & humidity, digital compass

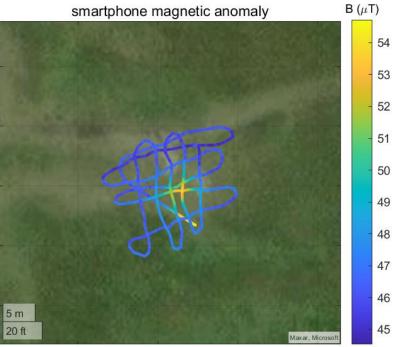


Example of leaking well imaged with FLIR camera



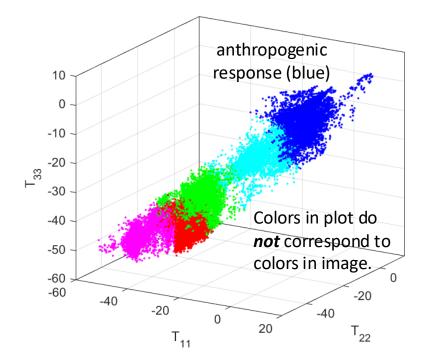
Forced Advection Sampling Technique (FAST) in action

- Dual airborne sensing:
 - Aboard a fixed-wing unmanned aerial vehicle.
 - High resolution methane sensor.
 - Magnetometer.
- Ground-based surveying:
 - Mobile continuous gas sampling.
 - FLIR camera.
 - Semtech Hi-Flow & FAST.
- Manned plane sensing:
 - FARAD PhoeniX X-band radar system
- Smartphone Geophysics:
 - Smartphone internal magnetometer, GPS



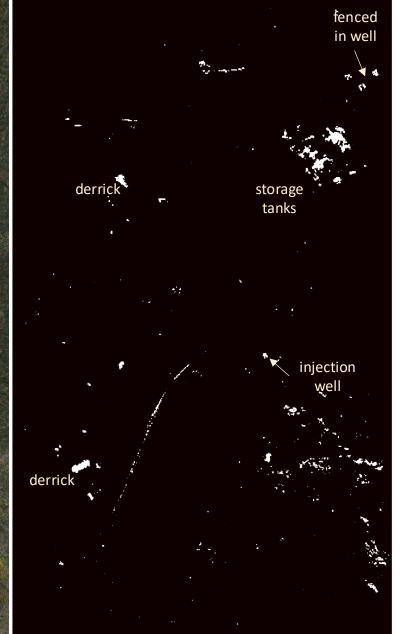
PolSAR footprint (pink); UAV footprints (green; HTMC potential UOW (yellow)

- Dual airborne sensing:
 - Aboard a fixed-wing unmanned aerial vehicle.
 - High resolution methane sensor.
 - Magnetometer.
- Ground-based surveying:
 - Mobile continuous gas sampling.
 - FLIR camera.
 - Semtech Hi-Flow & FAST.
- Manned plane sensing:
 FARAD PhoeniX X-band radar system
- Smartphone Geophysics:
 - $\circ~$ Smartphone internal magnetometer, GPS



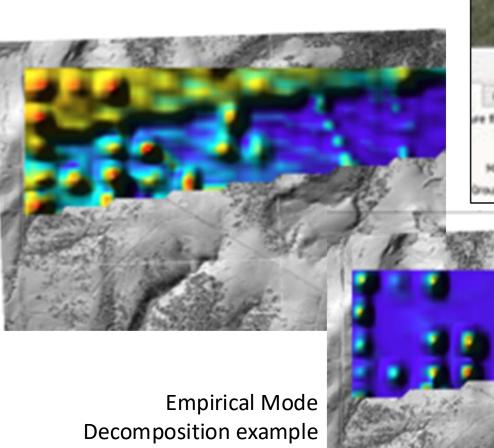
Magnetic anomaly from a buried well.

Post-deployment


Surface geometries produce different scattering mechanisms: single surface bounce - double bounce volumetric - helical

These scattering mechanisms can be grouped and trained to *classify the response of anthropogenic objects*.

Neural Network


0.6

Post-deployment

The magnetic anomaly from a vertical cased well is easily distinguishable from other anomalies (i.e., 'bullseye')

Still, post-processing is important:

- reduction to pole (RTP)
- header correction
- high & low pass filters
- signal decomposition

RTP example н not RTP 3D polygin e the distance between two points on the prisand round Length 13.80

Three stages of orphan well remediation

Before going into the field

Finding wells with field work

Contour plot of Mag

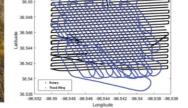
\$ 0.005

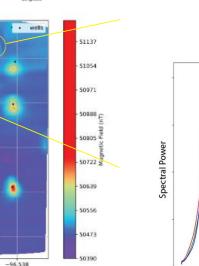
0.004

0.002

-96.550

-96 548


-96.546


-96.544

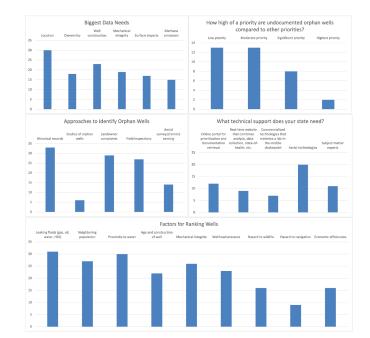
Longitude

-96.542

-96.540

2000 4000 Velocity (m/s) if the two-way distance is 662m

0


After finding a well

Conclusions

- Developing methods to attack the orphan well problem at each of the three stages
- Went into some detail on four areas today: topo maps, historical records, quantifying methane emissions, and some of our field work
- We welcome your input and feedback. It has been valuable in guiding our work so far, and we hope to continue that

