
How to estimate O&G well leak rates from near field concentration and wind observations? 
 
Manvendra Dubeya, Aaron Meyerb, Mohit Dubeyc, Natalie Pekneyd, Dan O’Malleya, Hari 
Viswanathana, Andrew Goverte and Sébastien Biraudf  
aLANL, bUniversity of Utah, cUniversity California Berkeley, dNETL, eDOE, fLBNL 
 
About 2.3 million orphan oil and gas (O&G) wells exist and are estimated to emit 200G g CH4 y-1 
by EPA/Enverus1 that implies an average CH4 leak rate of 10 g CH4 hr−1 per well.1 US 
government has an aggressive plan to plug orphan wells at costs of around $100K/well. In order 
to manage the costs of plugging millions of wells, quantifying leaks from individual wells is 
essential for prioritization. Current methods to quantify leaks require costly hardware, labor-
intensive protocols and expensive analysis (Appendix 1 – Table A1).  
 
In order to reduce costs and ease operations we explore the use of direct CH4 concentration 
measurements (at sub parts per million, sub-ppm, that is achieved by current solid state and 
optical sensors as noted in the Figure below) along and across the wind direction close to a 
point source (i.e. an orphaned well) to infer mass flow rate of methane.  The observed CH4 
concentration fields downwind of a point source (i.e. an orphan well), collected under stable 
wind conditions, together with wind speed measurements could be used to infer its leak rate. 
This flux inversion can be run using semi-empirical and parameterized Gaussian plume 
dispersion models (GPDMs) that have been extensively tested and approved by EPA for air 
pollution and hazard exposure assessments. The parameter tuning of GPDMs has been done at 
large scales (0.1 to 10s km) for various atmospheric stability classes, surface roughness and 
plume types. However, the use of GPDMs at small scales (0-10 m) necessary to infer emissions 
from orphaned wells is a new regime that has not been explored systematically.  
 
In this white paper, we propose a path forward to develop, evaluate and implement this near 
source GPDM as it can enable cost effective leak rate estimates by harnessing CH4 and wind 
measurements with sufficient accuracy to prioritize orphaned wells for plugging.  
 
In order to explore our strategy, a GPDM model developed to simulate a large coal mine vent 
shaft plume dispersion over a range of 100s meter was used. 2 We believe the GPDM model is 
most suited for the point source, orphan well leakage scenario.  
 
First, we ran the GPDM model in forward mode to determine concentration as a function of 
distance from the point source plume (Figure 1). We ran our model for typical stable 
atmospheric conditions anticipated at an Orphaned well (i.e. steady winds of 3 m/s) for three 
different source strengths: (1 g/hr; 17 g/hr; 40 g/hr). We assumed a stable boundary layer 
(Class “F”, as the scales are small), and ignored parameters such as surface roughness and 
buoyancy to simplify the problem. Figure 1 shows the CH4 concentration as a function of 
distance for a measurement point directly in the plume centerline, at the same level as the 
source (z=H=1m).  
 
 



Our simulations (Figure 1) show that the CH4 signal near the source is significant but drops 
exponentially – 100 ppm at source, 20 ppm at 2m and <1 ppm at 10m for the smallest 1 g/hr 
leak. This spatial feature can be easily measured with current sensors (sub ppm levels as shown 
in Figure) and the peak CH4 values scale at the source with its strength and the falloff with 
distance is steeper for larger leaks.  
 
However, there is also a large sensitivity of our results to the atmospheric stability class that is 
used to parameterize the plume dispersion coefficients (σy and σz) at larger scales. Changing 
stability classes causes large changes in our results. For example, with equal parameters [x=10 
m, Q=1 g/hr, and u=3 m/s] an "A" stability class (very unstable atmospheric conditions) yields to  
0.9 ppb, and an "F" stability class (very stable atmospheric conditions) gives 0.5 ppm, a 3 order 
of magnitude difference. The differences can be smaller near the source (0-3 m) and may be 
better suited to assess empirically point-source strength. Using GPFMs represent a significant 
source of uncertainty in our current ability to infer emission rates from concentration 
measurements, even as concentrations are detectable and the fall-off quantifiable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A simple approach to this challenge could be to measure methane concentrations at a given 
distance from the known point source under stable atmospheric conditions (“F” stability class), 
and at a similar height as the height of the point sources for about 5 minutes in order to 
capture some aspect of the plume structure. The maximum concentrations measured can be 
used to assess the point source strength based on Table 1 (as an example). 
 
 
 
 
 
 

Figure 1: Concentration as a function of distance from the plume centerline. 



 
Table 1: Expected methane concentration as a function of wind speed and distance from a 
1g/hr point source and stable atmospheric conditions (Class “F”). 
 

Wind velocity 
\ distance 

2m 3m 6m 10m 

1 m/s 67.2 ppm 25.2 ppm 5.1 ppm 1.6 ppm 
3 m/s 22.4 ppm 8.4 ppm 1.7 ppm 0.5 ppm 
5 m/s 13.4 ppm 5.0 ppm 1.0 ppm 0.3 ppm 

 
 
 

 
Figure 2: empirical cumulative distributions of measured methane flow rate from plugged (top), unplugged (bottom) 
abandoned oil, and gas wells in the US and Canada. Each curve represents a state/province. Blue and green curves represent 
eastern and western states in the US. red curves represent Oklahoma. Black curves represent Canadian provinces. Shaded 
regions in each plot represent the 90-100th percentile of methane emissions rates for that group, with the annotation showing 
the percentage of cumulative emissions, the top 10% of abandoned oil and gas wells. (Reprinted with permission from Williams 
et al. 2021, env.sci.tech. 55(1) 563-570. Copyright American chemical society.  

 
Figure 2 shows the percentage of cumulative emissions for the upper 10% of methane emitters 
for wells across the United States. The technique we are proposing in this white paper is to 
address the long, low-emissions tail of the skewed well distribution shown in the figure. The key 
point is that 90% of the emissions are expected to be from a few wells that emit above 10 g/hr. 
Wells above this threshold are significant contributors to methane emissions and thus likely 
merit better, more costly assessments. However, the large number of wells below this 



threshold but above 1 g/hr are the wells we expect this method to be most impactful. With the 
reason being that, the measurement cost-benefit for low flow rates relative to the value of that 
information is simply too high.  
 
Next, we use the GPDM model to develop a relationship between concentrations and flow rates 
for different wind speeds.  
 

 
Figure 3: Methane emission flow rates are shown as a function of measured concentration 2m from the source and wind speed. 
1 g/hr is the methane reporting requirement for the BIL 2021, EPA 17 g/hr is the limit of detection using OGIs to detect methane 
leaks.  

Figure 3 shows a plot of methane flow rate from a point source in terms of the concentration 
(as measured 2 m downwind from the point source) and wind speed. This would enable an 
operator to measure wind speed and methane concentration to estimate the flow rate from an 
orphan well. This approach would be much less expensive than using a flux tower (for instance) 
to determine the flow rate since measuring concentration and wind speed is inexpensive. Due 
to the methods cost, and ease of measurement it could be used as a screening protocol to 
prioritize wells that merit more investigation before plugging. Generating a figure like Figure 3 
requires inverse modeling techniques, which contrasts with the previously described forward 
modeling techniques. 
 



Our inverse approach accounts for uncertainties including measurement error, uncertainty in 
the atmospheric conditions, and flow rate from a point source. For this analysis, we used a 
using a Gaussian dispersion model of a buoyant air plume4. We used a standard Bayesian 
inverse modeling approach with a log-normal prior distribution for the flow rate (with a 
relatively high expected flow rate) and uniform prior distribution for the stability class. The 
stability classes considered are classes D, E, and F. This excludes the unstable classes A, B, and 
C. This implies that measurements should only be collected when the atmospheric conditions 
are not unstable, which greatly reduces the uncertainty in the estimates of the flow rate. A 
Markov Chain Monte Carlo (MCMC) approach was used to estimate the distribution of the flow 
rate given an observation of the concentration and the wind speed. This method can also 
produce uncertainty bounds (e.g., confidence intervals) for the flow rate. 
 
We are also discussing our simple concentration measurement strategy with O&G well plugging 
companies (e.g. Curtis Shuck, CEO Welldone Foundation) who are working with several states 
to quantify orphan well leaks prior to servicing. In the near-term we will provide them with our 
GPDM analysis, with the caveats to explore faster and cheaper well leak quantification 
protocols. In the longer-term we propose and plan to conduct small intensity-controlled release 
experiments to better constrain GPDMs at 0-10 m scales. In parallel we will also perform high 
resolution plume dispersion simulations using HIGRAD for more rigorous physics based analysis 
of dispersion, including the development of machine learning algorithms for leak quantification 
we have done for larger scales for ARPA-E.3 Sensitivity of atmospheric stability, surface 
roughness and buoyancy  on dispersion of small scales will be assessed. Our systematic fine 
scale analysis will reduce the uncertainty of source strength intensity by an order of magnitude 
– by both identifying the operational regime (distance from source, wind conditions) and 
building a validated and more robust model. 
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APPENDIX A 
 

Quantifying Natural Gas Leaks from Oil and Gas Well: Review of Current Methods 
 
About 2.3 million abandoned O&G wells exist and are estimated to emit 200G g CH4 y-1 by 
EPA/Enverus that implies an average CH4 leak rate of 10 138 g CH4 h−1 per well.1  Mean per well 
emission factors of 0.1 g CH4 h−1, 3.2 g CH4 h−1, and 138 g CH4 h−1 for plugged, unplugged and 
active wells respectively, have been measured, with those abandoned between 1993 and 2015 
of 16 g CH4 h−1.2  While substantial well to well variability exists in emissions and only a tiny 
fraction have been sampled, methods to quantify the 1-200 g CH4 h−1 emissions will be key to 
improve the statistical characterization of leaks.  The US government (DOE, DOI) has targeted 
orphan wells to reduce CH4 emissions, which demands prioritized, cost effective and reliable 
operational methods to quantify leaks from individual wells. We evaluate commercial point CH4 
emission quantification techniques using the latest peer review studies and discuss ongoing 
DOE research on fast, robust, affordable, and operator friendly approaches. 
 
Gas leaks from Oil and Gas wells are typically point sources that can be isolated and quantified 
by a variety of techniques  using in situ CH4 sniffers (1-8)3-5 and optical imagers (9)6. 
 

1. Static chamber (chamber and CH4); where a container of a known volume (V; m3) is 
placed over the emission source, and the change in concentration (C; g m−3) inside the 
container over time (t; s) is used to calculate the emission (Q; g s−1) as Q = dC/dt*V. This 
is simple and compact and portable with automation feasible (real time CH4 increase 
with time versus aliquot sampling for lab analysis). However, potential to exceed the 
Lower Explosive Limits (LELs) pose a safety hazard that could be addressed using a 
threshold sensor. 
 

2. Dynamic chamber (chamber, CH4 and flow); where an additional flow of air is passed 
through the chamber that together with the source emission results in a stable 
concentration. The CH4 flux (Q; g s−1) is calculated from the CH4 concentration at steady 
state (Ceq; g m−3), the background CH4 concentration (Cb; g m−3) in the air used to flush 
the chamber, the height of the chamber (h; m), the flow of air through the chamber (q; 
m3 s−1), the footprint of the chamber (a; m2), and the volume of the chamber (V; m3) by 
Q = ((Ceq-Cb)*h*q*a)/V. This is preferred as it reduces the likelihood of exceeding LEL 
inside the chamber.  

 
3. Bachrach Hi Flow Sampler (CH4 and flow); draws high volumes of air into a 

measurement chamber at a fixed rate (F; m3 s−1), and the background CH4 concentration 
(Xb; g m−3) and the concentration of CH4 in the air are measured (Xs, g m−3) and used to 
calculate the emission rate (Q, g s−1). It draws air at between 226 and 297 L min−1 and 
can measure CH4 fluxes between 50 g CH4 h−1 and 9 kg CH4 h−1 to an accuracy of ±10 %. 

 
4. Gaussian Plume Model (ambient CH4, winds): The concentration enhancement of the 

gas (X; µg m−3), at any point x m downwind of the source, y m laterally from the center 



line of the plume, and z m above ground level can be calculated analytically from the 
emission rate (Q; g s−1), the height of the source (hs; m), and the Pasquill–Gifford 
stability class (PGSC) as a measure of air stability. Fast sensitive laser based CH4 sensor 
(e.g. Picarro, Aeris or Los Gatos) are used to measure the dispersing plume about 2 m 
above the surface and downwind (1 and 10 m) of the the emission point. Wind speed 
and wind direction are measured using a weather station or 3-D sonic anemometer. The 
Gaussian Plume model is recommended for leaks greater 100 g CH4 hr−1 but has been 
applied to leaks 10 to 80 kg CH4 hr−1 with an uncertainty of ±45 % (Riddick et al., 2019b). 
Parameters like roughness length, stability and time averages need more systematic 
evaluation for refinement. 

 
5. EPA OTM-33a Method (ambient CH4, winds):  The concept is based on stationary 

measurements of CH4 as a function of the wind direction. It is similar to a Gaussian 
Plume Model, but instead of moving a detector through a plume, changes in wind 
direction move the plume across a stationary detector, and thus, the Gaussian plume is 
formed after taking into account the gas transport. In a recent field campaign, a fast CH4 
analyzer and 3D weather station were set up 20–200 m from the source in the main 
wind direction and measured for 15 minutes.4 CH4 enhancements were averaged as a 
function of the wind direction in 10° bins. The peak methane mole fraction was 
determined with a Gaussian fit and used to calculate the methane emission rate 
Q=2π⋅σy⋅σz⋅U⋅C 

 
6. Backward Lagrangian Stochastic Model (ambient CH4, winds): The method uses 

measurement position, gas concentration, meteorology, and micrometeorology as 
known inputs, and the model works iteratively backwards to simulate the motion of the 
air parcel. The model calculates the ratio of downwind concentration to emission, 
depending on the size and location of the source. The emission rate (Q; g m−2 s−1) is then 
inferred from the measured gas concentration at 1.2 m above ground level (Xm; g m−3) 
and the background gas concentration (Xb; g m−3) by Q = (Xm- Xb)/(C/Q)sim. WindTrax, a 
commercial inverse dispersion model version, uses wind speed (u; m s−1), wind direction 
(WD; ∘), temperature (T; ∘C), downwind CH4 concentration (X; µg m−3), location and 
height of the CH4 detector, background CH4 concentration (Xb; µg m−3), the roughness 
length (z0; m), and the Pasquill–Gifford stability class for simulation input parameters. 

 
7. Machine Learning using computational fluid dynamics (CFD) Models (ambient CH4, 

winds):  Recently LANL scientists have developed ML methods trained by high resolution 
CFD models of plume dispersion and tested them in blind tests for ARPA-E at the METEC 
site.5 Using high frequency wind speed, direction and CH4 measurements the method 
performed very well in locating leaks and also quantifying flux – provided an empirical 
scale factor attributed to sub-grid model variations was used. In principle this method is 
an improvement over Gaussian plume, Lagrangian, and OTM-33a and can be 
implemented in real time, while still accounting for complex micrometeorology. 

 
 



8. Eddy Flux Measurements (fast ambient CH4, winds): These are typically performed over 
large scales for more diffusive leaks and are labor intensive and expensive. 
Simultaneous high frequency (10Hz) of CH4 and vertical winds are made and the co-
variance of the two gives the upward flux. The fetch of the area sampled is determined 
by the horizontal winds. Since these winds can vary, the method is not easy for the 
sampling of fixed point leaks 

 
9. Quantitative Optical Gas Imaging (QOGI): OGI cameras visualize CH4 leaks plumes 

emanating from a source using its unique infra-red absorption features. However, their 
ability to quantify emissions is challenging due to complex signal (path length at 
distance), complex dispersion and low sensitivity. Recently, a customized QL100 
quantification module that uses the image information from a OGI camera and 
supplementary data (distance from camera to leak source, environmental conditions 
and gas optical properties) to calculate CH4 mass emission rate.6 This new 
QOGI system is designed for flux quantification and was evaluated using the EPA’s 
Method 21 (CH4 sniffing values) correlations tables derived by vacuum bagging leaks of 
several equipment pieces under different service. The test data confirmed that M21 
correlations cannot be used to accurately estimate individual leak rates because they 
are statistical. The QOGI system, on the other hand, was able to provide accurate 
quantification for individual leaks over the range 1.7 to 1000 g/h. Novel algorithms that 
analyze the shape of the plume that is determined by the size of the leak and winds can 
be developed to improve the flux estimation. 

 
The hardware, operational and inversion complexity, performance and capital, labor and 
software costs that depend on many factors are summarized in the table. Note that the CH4 
sensor costs can range from $1,000 to $100,000 and licensing/development fee for inversion 
software will need to be estimated. Finally, we stress that CH4 in gas can range from 99% (dry) 
to 60% (wet) and sensors will need to account for that. Fortunately, laser based sensors are 
now available to measure C2H6 to do this. 
 

 
Table-A1: A comparison of methods used to measure CH4 emissions from point O&G well 
sources 
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